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Abstract

The interaction between the inner and outer layer in large-eddy simulations (LES) that use approximate near-wall treatments is

studied. In hybrid Reynolds-averaged Navier–Stokes (RANS)/LES models a transition layer exists between the RANS and LES

regions, which has resulted in incorrect prediction of the velocity profiles, and errors of up to 15% in the prediction of the skin

friction. Several factors affect this transition layer, but changes we made to the formulation had surprisingly little effect on the mean

velocity. In general, it is found that the correct prediction of length- and time-scales of the turbulent eddies in the RANS region is

important, but is not the only factor affecting the results. The inclusion of a backscatter model appears to be effective in improving

the prediction of the mean velocity profile and skin-friction coefficient.

� 2003 Elsevier Science Inc. All rights reserved.

PACS: 47.27.Eq; 47.27.Nz; 47.60.+i

1. Introduction

Large-eddy simulation (LES), a technique in which

only the largest turbulent eddies are computed accu-

rately, while the small ones are modeled, is increasizngly

used as a tool to study turbulent flow problems for
configurations in which the Reynolds-averaged Navier–

Stokes (RANS) equations are not sufficiently accurate.

Such problems include non-equilibrium, three-dimen-

sional flows, relaminarizing and retransitioning bound-

ary layers, and massively separated flows, especially if

the sound emission is of concern. The fact that much of

the energy is resolved, while only the smaller, more

universal, eddies are modeled, results in significant ad-
vantages, in terms of accuracy, over the RANS ap-

proach. Since the grid size only needs to be small enough

relative to the integral scale of motion, and does not

need to match the Kolmogorov scales, LES is also sig-

nificantly cheaper than direct numerical simulation

(DNS) of the equations of motion.

Developments in modeling, numerical algorithms and

computational speed have made it possible to apply LES

to fairly complex problems at Reynolds numbers higher

than those achievable by DNS. The application of LES

has been particularly successful in non-equilibrium flows

at moderate Reynolds numbers, in free-shear layers, and
in massively separated flows in which the accurate sim-

ulation of regions near solid boundaries is not of pri-

mary importance. In massively separated flows, for

instance, the detached-eddy simulation (DES) method,

proposed by Spalart et al. (1997) (a hybrid technique in

which the attached boundary layers are simulated using

the RANS approach, while only the separated-flow zone

is computed using LES) has had notable success. The
main limitation of LES to date (in the absence of

chemistry and/or multiple phases) appears to be in the

application to high Reynolds-number boundary layers.

In these flows the advantage of LES, as it has gen-

erally been practiced, over DNS becomes less significant.

Away from solid boundaries, the requirement that the

energy-carrying scales of motion are resolved results in a

grid size proportional to the integral scale of motion.
Since this is usually a weak function of the Reynolds

number (for the outer region of a turbulent boundary
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layer, for instance, d=c � Re�0:2 where c is the airfoil

chord or other global dimension) the cost of LES does

not depend strongly on the Reynolds number itself. If

the near-wall region of a boundary layer needs to be
resolved, on the other hand, the grid must be propor-

tional to the size of the inner-layer eddies, which is

strongly Reynolds-number dependent. Chapman (1979)

estimated that the number of points required to resolve

the wall layer is approximately

Nxyz / Re1:8
L : ð1Þ

We use the short-cut notation Nxyz for the number of
points in three dimensions, but observe that this esti-

mate applies to grids made of nested and optimized

layers, which coarsen as soon as possible away from the

wall. Simple single-block structured grids would lead to

worse scaling laws. In contrast, if designed according to

the same principles, modern unstructured grids would

have the same Nxyz.

This scaling, although more favorable than that of
DNS

Nxyz / Re2:2
L ; ð2Þ

Reynolds (1990) still makes the resolution of the wall

layer in high Reynolds-number flows infeasible with

LES. Reynolds assumed single-block structured grids,

which do not take full advantage of the easing resolution

requirements as the distance from the wall increases
(these grids coarsens only in the normal direction).

However, this makes much less difference for a DNS

than for an LES. The reason is that the Kolmogorov

length scale grows relatively slowly, like the wall dis-

tance to the power 1/4 (because the dissipation drops

like the inverse of the wall distance); in contrast, the size

of the large eddies grows linearly with wall distance, so

that a natural LES grid spacing also grows linearly.
To circumvent the high cost incurred to represent

accurately the near-wall eddies, one can bypass the wall

layer altogether, and model the effects of the eddies

(small and large) present in this region in a statistical

sense. Modeling the wall layer makes the number of grid

points required by the calculation of a boundary layer

proportional to Re0:4 only (the resolution of each ‘‘cube

of boundary-layer’’ requires a set number of points, but
the cubes become more numerous as the Reynolds-

number increase thins the boundary layer). However,

this process re-introduces strong empiricism, for in-

stance embodied in the express assignation of the value

of the von K�aarm�aan constant j. Two reassuring facts are

that the empiricism is very stable in the sense that the

near-wall region is very well known quantitatively, at

least in equilibrium flows, and that grid refinement
shrinks the region in which the empiricism is in control.

Still, the rate at which modeling errors vanish is much

less favorable than for free-shear flows.

Recent reviews of wall-layer models can be found in

Cabot and Moin (2000) and Piomelli and Balaras

(2002). Here, only a brief summary will be given. In

general, wall-layer models (also known as ‘‘approximate
boundary conditions’’) can be of two types: equilibrium

laws and zonal models. Equilibrium laws assume that

the dynamics of the wall-layer are universal and that

some generalized law-of-the-wall exists (at least if the

equations are averaged over a large enough patch); the

wall stress is then computed from this general law, which

is applied some distance away from the wall. Their

RANS equivalent are ‘‘wall functions’’. Although
equilibrium laws have been used with considerable suc-

cess in simple, attached flows (especially in meteoro-

logical applications), they suffer from significant

limitations. They cannot be applied easily in complex

geometries, on fully-unstructured grids, or in flows in

which the mean velocity profile is not known a priori

even very close to the wall. For instance, in calculations

of the flow in a rotating channel, equilibrium laws could
not predict the quasi-relaminarization that is observed

on one side of the channel (Balaras et al., 1996). Thus,

their value as a predictive tool in engineering applica-

tions is limited.

Zonal approaches are hybrid RANS/LES methods

that solve the filtered Navier–Stokes equations away

from the wall, and the unsteady RANS (URANS)

equations in the near-wall region. The simulation ex-
tends to the wall, where the no-slip condition is applied.

Zonal approaches are based on the explicit solution of a

different set of equations in the inner layer; still, a field

equation is used rather than a single relation between

stress and velocity at the wall-layer edge. Two tech-

niques of this type have been used up to now: in the first,

known as the ‘‘two-layer model’’ (TLM) two separate

grids are used, while in the other, which is based on the
DES method, a single grid is used, and only the turbu-

lence model changes from one region to the other.

The TLM was proposed by Balaras and Benocci

(1994) and Balaras et al. (1996). While the filtered Na-

vier–Stokes equations are solved in the core of the flow,

in the wall-layer a simplified set of equations is solved in

a fine grid embedded under the coarser, LES, mesh. The

cost of this method is marginally higher than the cost of
calculations that use equilibrium boundary-conditions,

since the inner layer, despite the fact that is discretized

using a very fine grid in the normal direction, requires a

small percentage of the total cost of the calculation: two

one-dimensional problems are solved, and no Poisson-

equation inversion is required to obtain the pressure.

This method has been used in channel flow at high

Reynolds numbers (Balaras et al., 1996), backward-
facing steps (Cabot, 1996; Diurno et al., 2001), and in

calculations of the trailing edge of an airfoil (Wang and

Moin, 2002), with fairly accurate results.
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DES was introduced by Spalart et al. (1997) as a

method to compute massively separated flows. DES is a

hybrid approach that combines the solution of the

RANS equations in the attached boundary-layers with
the solution of the LES equations in the separated re-

gions, which are where the detached eddies are impor-

tant. Because the governing equations must be integrated

in a time-accurate fashion in DES, the ‘‘RANS region’’ is

modeled via solution of the URANS equations. While the

integration in time of the RANS equations is straight-

forward in practice, the interpretation of URANS is less

obvious (see Spalart (2000) for additional discussion).
DES possesses the advantage that, as in classical LES,

grid and time-step refinements yield additional physics,

i.e., an increased range of length and time scales are re-

solved. This is a very desirable attribute as the fine-grid

limit of DES is a DNS for which empirical input via the

turbulence model vanishes.

In the standard DES approach the entire boundary

layer is modeled by URANS. Nikitin et al. (2000), how-
ever, used DES as a wall-layer model in calculations of

plane channel flow. In their computations, in the inner

layer the URANS equations were solved, with the Spal-

art and Allmaras (1994) model to parameterize the effect

of all scales of motion. The Reynolds shear stress, in this

region, was provided entirely by the turbulence model. In

the outer flow the model was modified to yield a much

lower eddy viscosity than it would as a pure RANS model,
which allowed the formation of turbulent eddies capable

of supporting most of the Reynolds shear stress. Nikitin

et al. (2000) performed calculations with different nu-

merical schemes and grids, exploring a wide range of

Reynolds numbers (1806Res 6 80,000). The calculations

showed some promising results: turbulence in the outer

layer was sustained even though the grids were not par-

ticularly fine and the flow in the inner layer was, visually,
too smooth (this was not shown by Nikitin et al. (2000),

but was verified subsequently). The skin-friction coeffi-

cient Cf , however, was under-predicted by approximately

15% in most cases. At intermediate and high Reynolds

numbers a logarithmic region with the correct intercept

developed in the quasi-steady RANS region, that con-

nected to an LES region characterized by an excessively

high intercept of the logarithmic layer, which was re-
flected in the low values of Cf . Grid refinement translated

this undesirable ‘‘step’’ towards the wall, but without

changing its height. Furthermore, unphysical, very

elongated wall streaks were formed in the RANS region.

Both these issues have been investigated by several

researchers (Baggett, 1998; Piomelli et al., 2001; Hamba,

2002). Baggett (1998) argues that the DES buffer layer is

due to the presence of the artificial streaks, which causes
a de-correlation between streamwise and wall-normal

fluctuations that must be compensated by a higher ve-

locity gradient to balance streamwise momentum; as a

result, the intercept of the LES logarithmic region is

shifted to a higher value. Hamba (2002) performed

simulations in which the inner layer was modeled by

RANS, the outer by LES, and obtained the shift men-
tioned before; he then used RANS in the outer layer and

LES in the inner one, with the same result.

Based on these findings, it appears that the shift in the

logarithmic layer is quite robust, its appearance de-

pending more on the grid resolution than on the mod-

eling approach. The discrepancy between the log-law

intercepts in the inner and outer layer is due to the

transition between the LES and RANS regions. Here,
the eddy viscosity is lower than if it were a RANS re-

gion, but the Reynolds-stress generating scales have not

yet been formed; thus, the resolved motions cannot yet

support their share of the shear stress, while the model

has already switched to the LES mode; the only way to

reach the equilibrium value of the shear stress (which, in

the plane channel, is fixed by the distance from the wall)

is by a velocity gradient increase that balances the eddy
viscosity decrease.

Several ways to alleviate this problem have been

proposed. Piomelli et al. (2001) investigated whether

bringing the RANS/LES interface closer to the wall, or

using less dissipative outer-layer SGS models, would

facilitate the generation of Reynolds-stress generating

structures. They found that the shift in the log layer was

unaffected by these changes. Hamba (2002) had some
success by prescribing an overlap zone in which the

model switched smoothly from the RANS to the LES

formulation. This zone extended to approximately 20%

of the channel half-width. Other hybrid techniques that

combine RANS and LES, while not applied as wall

models to date, would suffer from similar errors without

ad hoc adjustments being made to the underlying closure.

Another possible method is the use of a backscatter
model in the inner layer. Several types of backscatter

models have been used in LES (Leith, 1990; Chasnov,

1991; Carati et al., 1995), mostly within the framework

of homogeneous flows. Mason and Thomson (1992),

however, used stochastic backscatter in calculations of

boundary layers at very high Reynolds numbers. They

used approximate boundary conditions of the logarith-

mic type (Mason and Callen, 1986). Although in their
calculations the inner layer was bypassed entirely, they

also found a shift in the logarithmic region, with a

higher velocity gradient at the first few grid points, that

was corrected when the backscatter model was intro-

duced. Baggett (1998) suggested that the stochastic

backscatter had the effect of breaking up the ‘‘super-

streaks’’ and thus introduce a de-correlation of the

velocity that allowed a more rapid formation of Rey-
nolds-stress generating eddies.

In the present paper we will examine these issues in

more detail. In particular, we will describe the effects of
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the interface location both on the turbulent statistics

and on the turbulence structure. We will then propose

and test the use of a backscatter model in the inner layer.

In the following, the problem will first be set up, and the
important equations will be presented. Then, the nu-

merical results will be shown and discussed. Finally,

some conclusions and recommendations for future work

will be made.

2. Problem formulation

The problem used to study the interaction between

RANS and LES zones is the plane channel flow. The

filtered equations of conservation of mass and momen-

tum

o�uuj
oxj

¼ 0; ð3Þ

o�uui
ot

þ o

oxj
�uuj�uui
� �

¼ � op
oxi

þ 1

Res
r2�uui �

osji
oxj

ð4Þ

(where the over-bar denotes filtered variables and the

effect of the subgrid scales appears through the SGS

stresses sij ¼ uiuj � �uui�uuj) are solved numerically using a
second-order accurate finite-difference method on a

staggered grid. The discretized equations are inte-

grated in time using a semi-implicit fractional time-step

method, in which the wall-normal diffusive terms are

advanced in time using the Crank–Nicolson method, the

remaining diffusive terms and the convective term are

advanced using the Adams–Bashforth method. The

Poisson equation is then solved using a direct solver,
and the velocity is corrected to make the field solenoidal.

The flow is driven by a pressure gradient that is varied in

time in such a way as to maintain the mass flux through

the channel constant.

In the DES approach the SGS stresses are parame-

terized using an eddy-viscosity model:

sij � 2
3
dijskk ¼ �2mTSij; ð5Þ

Sij ¼
1

2

o�uui
oxj

 
þ o�uuj

oxi

!
: ð6Þ

The eddy viscosity is obtained by solving a transport

equation for an auxiliary variable ~mm:

D~mm
Dt

¼ cb1
eSS~mm � cw1fw

~mmedd
" #2

þ 1

r
r 	 ðm
hn

þ ~mmÞr~mm
i

þ cb2ðr~mmÞ2
o

ð7Þ

in which the LHS contains the unsteady and advective

terms, and the first group in the RHS is the production

term, the second is a destruction term, the last one is a
diffusion term. The other quantities in (7) are given by:

eSS ¼ jSj þ ~mm

j2edd 2
fv2; fv1 ¼

v3

v3 þ c3
v1

;

fv2 ¼ 1 � v
1 þ vfv1

;

mT ¼ ~mmfv1; v � ~mm
m
; fw ¼ g

1 þ c6
w3

g6 þ c6
w3

� 1=6

;

g ¼ r þ cw2ðr6 � rÞ; r � ~mmeSSj2edd 2
;

where jSj ¼ ð2SijSijÞ1=2
, edd is the minimum between

the RANS and LES length scales, and edd ¼ minðdRANS;
dLESÞ; its definition and role will be discussed later. The

constants are:

cb1 ¼ 0:1355; r ¼ 2=3; cb2 ¼ 0:622; j ¼ 0:41;

cw1 ¼ cb1=j
2 þ ð1 þ cb2Þ=r;

cw2 ¼ 0:3; cw3 ¼ 2:0; cv1 ¼ 7:1:

The model constants have been evaluated using sev-

eral building block flows (Spalart and Allmaras, 1994).

The use of ~mm instead of the eddy viscosity is motivated by

the fact that, unlike mT, the new variable behaves linearly

near the wall and does not require the use of damping
functions. In the present simulations, (7) is discretized

on the same grid as the pressure (i.e., the eddy viscosity

is located at the pressure points), and is integrated in

time using a semi-implicit method. The non-linear terms

on the RHS are evaluated partly at the new time-step,

partly at the old one (for instance, the second part of the

diffusion term is written as cb2r~mmnþ1r~mmn). All terms are

then integrated using an implicit Crank–Nicolson
method, except for the advection, which is advanced in

time using the Adams–Bashforth scheme.

All calculations were carried out using a domain

whose dimensions are 2pd � pd � 2d in the streamwise,

spanwise and wall-normal directions (x, y and z, re-

spectively); d is the channel half-height. The Reynolds

number (based on friction velocity and channel half-

width) was approximately equal to 5000. The same grid
spacing was used for all calculations in the planes par-

allel to the wall: Dx ¼ Dy ¼ 0:049d. This value satisfies

theoretical estimates (Chapman, 1979) and previous

calculations (Nikitin et al., 2000), which indicate that

between 15 and 20 points per channel half-height are

required to resolve accurately the outer-layer structures.

The mesh in the wall-normal direction is stretched using

a hyperbolic tangent transformation. The first grid point
is always maintained at zþ < 1, and the maximum grid

spacing in the wall-normal direction is Dzmax ¼ 0:054d.

This results in nearly cubic grid cells in the outer flow,

and very flat cells in the near-wall region. This is a re-

quirement of DES, and is not a general one for LES

near-wall treatments. It increases the cost trend as a
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function of Re, but only moderately; the cost, in fact,

only increases logarithmically (Nikitin et al., 2000).

When the Spalart and Allmaras model (1994) (which

in the following will be referred to as ‘‘SA model’’) is
used either for DES or as a wall model, the length-scaleedd plays a crucial role. In wall-modeling applications, the

RANS length scale dRANS is taken to be the distance

from the wall, zw. At a distance from the wall zswitch (the

point where zw ¼ dLES), the length scale edd switches from

the RANS-like length scale (the distance from the wall)

to an LES-like one, dLES (the filter width, which is typ-

ically related to the grid size). As a consequence, the
‘‘destruction of eddy-viscosity’’ term is increased, and

the eddy viscosity has smaller values than expected when

the model is used for RANS. In the present investiga-

tion, dLES was given by

dLES ¼ CDESD: ð8Þ
Two forms of D were used in this work: the original

one proposed by Nikitin et al. (2000) is

D ¼ maxðDx;Dy;DzÞ: ð9Þ

The relation (9) does not account for the shape of the

grid cells and leads to a constant filter width in the LES

region (Fig. 1). An alternative form of D is also em-

ployed in the present computations,

D ¼ CDESðDx2 þ Dy2 þ Dz2Þ1=2
: ð10Þ

This expression, unlike (9), accounts for factors such as

the grid-cell aspect ratio. Powers higher than two can be

used and approach the original definition. If the value of

CDES is unchanged, the definition (10) is larger than (9)

by a factor of approximately
ffiffiffi
2

p
near the wall, and

ffiffiffi
3

p

at the center of the channel (Fig. 1).

To examine the effect of zswitch, various values of CDES

were tested. In the present calculations, the switch oc-

curs between 0:045dP zswitch P 0:018d (depending on

the value of CDES), which correspond to 225 P zþswitch P
90. At this location the model smoothly evolves from a

RANS-like model to an LES-like one, and the blending

region mentioned above is expected to be found. The
length-scales corresponding to the values of CDES used

are shown in Fig. 1, and a summary of the calculations

can be found in Table 1.
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Fig. 1. Length scales for the DES calculations.

Table 1

Summary of computational parameters

Case CDES D zswitch zþswitch Model inner/outer

C065S 0.65 ðDx2 þ Dy2 þ Dz2Þ1=2
0.046 225 SA/SA

C038S 0.38 ðDx2 þ Dy2 þ Dz2Þ1=2
0.027 112 SA/SA

C025S 0.25 ðDx2 þ Dy2 þ Dz2Þ1=2
0.018 90 SA/SA

C038Smag 0.38 ðDx2 þ Dy2 þ Dz2Þ1=2
0.027 112 SA/Smag

C065M 0.65 maxðDx;Dy;DzÞ 0.036 180 SA/SA

C065Mk 0.65 maxðDx;Dy;DzÞ 0.036 180 SA/SA + forcing

C065MB 0.65 maxðDx;Dy;DzÞ 0.036 180 SA/SA + forcing
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3. Results and discussion

When the DES approach is used with the standard
value CDES ¼ 0:65, Fig. 2, the step in the profile reported

by Nikitin et al. (2000) is clearly visible. The error in the

prediction of the skin-friction coefficient is 16.5% or

22.1%, depending on whether D is defined by (9) or (10).

The velocity profile has the correct behavior in the inner

layer, which is governed by the RANS model, tuned to

reproduce the linear and logarithmic profiles in flows of

this kind. As the flow transitions into the LES region,
however, an unphysical ‘‘DES buffer layer’’ is formed in

which the velocity gradient dU=dz is too high. A new

logarithmic region can then be observed with a high

intercept. The error in the prediction of the skin friction

coefficient is defined as

Error ¼ jCf � Cf ;Deanj
Cf ;Dean

� 100; ð11Þ

where the Cf is

Cf ¼
sw

qU 2
b=2

; ð12Þ

here, sw ¼ ldU=dzjw is the mean wall stress, Ub is the

average velocity in the channel, and

Cf ;Dean ¼ 0:073Re�1=4
b ð13Þ

(Dean, 1978), with Reb ¼ 2Ubd=m (where d is the channel

half-width). The percent error for all the simulations is

reported in Table 2.
Time histories of the streamwise velocity are shown in

Fig. 3. The velocity in the inner layer and in the blending

layer is smooth, and the smallest timescale present in the

flow is of order 0:3d=us. Only for zþ > 2000 are shorter

timescales generated. In addition, we observe a strong

vertical correlation between the time-series for

zþ < 1000, which can be observed in the spatial struc-

tures as well (see below).
‘‘Super-streaks’’ can be observed in the velocity-

fluctuation contours (Fig. 4). In the RANS region

(zþ < zþswitch ¼ 225) the flow is not entirely smooth: sig-

nificant fluctuation levels exist, but the size of the eddies

in this region is unphysical. Also, one can observe a

strong correlation between the velocity fields for

zþ < 1500. Only above this value shorter-scale eddies

are formed, and the more isotropic eddies that are ex-
pected in the outer flow can be observed.

Zonal approaches employ parameterizations in the

near-wall layer based on equilibrium, i.e., these ap-

proaches presume that the timescales of the inner-layer

structures sinn are much shorter than the timescales as-

sociated with outer-layer eddies, sout � 1=jSj. The small

inner-layer eddies are, however, smoothed by the spatial

grid-averaging, and by the temporal filtering implicitly
applied by the use of a time-step that is of the same

Table 2

Percent error in the prediction of the skin friction coefficient Cf

Case C065S C038S C025S C038Smag C065M C065Mk C065MB

% Error 22.1 19.0 27.6 25.7 16.5 5.3 11.2
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Fig. 2. Mean velocity profiles.
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order as sout. As a result of the modeling assumptions,

then, the inner-layer flow should have the same time-

scale as the outer flow, sout. The SA model, however,

tends to smooth the velocity significantly in the inner

layer, and the time-scales there are considerably longer

than the outer-layer ones. This is not natural, and it

makes a poor use of the resolution in both space and

time for the wall region, which is crucial. In the outer
layer, where the eddy viscosity is decreased and the

elongating effect of the mean shear is much weaker,

shorter time-scales are generated; the DES buffer is the

region in which these scales are formed.

Decreasing the value of CDES is only partially bene-

ficial. When the RANS/LES transition is brought closer

to the wall, smaller scales are indeed generated (Fig. 5).

The velocity fluctuation contours still show very elon-

gated structures, but their streamwise extent is signifi-

cantly reduced. Eddies with shorter wavelengths and

time-scales can be observed even relatively close to the

wall (starting from the second level shown in the plots,

zþ ¼ 256), and the physical picture of the blending re-

gion becomes more similar to what is expected. How-
ever, the ‘‘DES buffer layer’’ is not eliminated, merely

shifted closer to the wall (Fig. 2). The errors in the skin

friction prediction, reported in Table 2, remained sig-

nificant.

The results obtained using CDES ¼ 0:65 and D ¼
maxðDx;Dy;DzÞ (Case C065M), or CDES ¼ 0:38 and the

Fig. 4. Contours of streamwise velocity fluctuations in planes parallel to the wall. Run C065S.
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square-root definition of D (Case C038S) were very
similar (see Fig. 2); this reflects the similarity of the

length-scale distributions in these cases (Fig. 1). The use

of CDES ¼ 0:65 with the square-root definition results in

excessively high values of the eddy viscosity (Fig. 6),

especially for 100 < zþ < 1000. Worse results were ob-

tained with CDES ¼ 0:25. In this case, in fact, the switch

between RANS and LES zones takes place at the lower

edge of the logarithmic layer. As a result the entire
logarithmic layer is displaced.

We also investigated whether coupling the inner-layer

model to a different outer-layer model could be benefi-

cial. To this end, the SA inner-layer model was matched

with the Smagorinsky model, which is expected to be

more responsive to the outer-layer velocity field. Al-
though this modification significantly altered the eddy-

viscosity distribution, which was much lower in the

outer layer (Fig. 6), and was successful in introducing

short-scale fluctuations, the shift in the logarithmic

layers remains (compare with Fig. 2).

The fact that the structure of the flow can be modified

significantly without affecting the mean velocity profile

indicates that the coupling between the physical picture
of the RANS/LES transition region and the mean ve-

locity profile may be weaker than conjectured by

(among others) Baggett (1998) and Piomelli and Balaras

(2002). Lowering the interface did result in increased

resolved stress in some regions (Fig. 7). In particular,

Fig. 5. Contours of streamwise velocity fluctuations in planes parallel to the wall. Run C038S.
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this indicates that the connection between the ‘‘super-

streaks’’ and the increased velocity gradient is not very

strong, and that small-scale structures can be generated

near the wall by changing the location of the interface

without altering the mean velocity profiles.
A further series of tests involved the use of a sto-

chastic backscatter model in the inner layer. To this end

a forcing term fi was added to the right-hand-side of the

momentum equation (4). A stochastic backscatter model

has at least three free parameters: a length scale Lf , a

characteristic time-scale Tf , and an amplitude. Since the

backscatter represents the effect of subgrid-scales, its

length scale should be the filter width, and its time-scale

should be the time step. For these reasons, the forcing

was obtained from a series of Gaussian random num-

bers, which were generated at each time-step. The am-

plitude of the forcing was designed to vanish at the
walls, and be non-zero only over a thin layer, usually

straddling the interface between LES and RANS re-

gions. A typical amplitude envelope used in the simu-

lations was

f ðzÞ ¼ A
ðkzÞ2

1 þ ðkzÞ4
; ð14Þ
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the peak of f occurs at z � 1=k; a value of k ¼ 30 centers

the function near the RANS/LES interface; A is an

amplitude parameter that, in this work, was determined

empirically. The force was filtered in all directions using
a top-hat filter with filter-width equal to the grid spac-

ing. Finally, the forcing was projected onto a diver-

gence-free field, which was added to the right-hand-side

of the Navier–Stokes equations. Root-mean square

fluctuations of the force for a representative case (case

C068Mk) are shown in Fig. 8. Notice how the projection

damps the wall-normal component of the forcing very

significantly: the forcing does not affect directly the wall-

normal transport of momentum as substantially as the

other velocity components. The backscatter model
proposed by Mason and Thomson (1992) has a similar

distribution, but lower amplitude and a peak closer to

the wall. Exponential envelopes were also tried (case

C065MB, for instance) with similar distributions and, as

will be shown, similar results. The maximum amplitude

was varied over a significant range; low values of A
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resulted in little change in the mean velocity profile.

Only the cases in which the mean velocity profile was

modified will be shown here.

Fig. 9 shows the velocity profiles obtained using the
backscatter models described above, with a case in

which no stochastic forcing was used. A significant im-

provement in the mean velocity profile can be seen,

which results in a nearly correct prediction of the skin-

friction coefficient. The error, in fact, is reduced to ap-

proximately 5% in the C065Mk case.

The backscatter model generated zero mean mo-

mentum; although a new set of random numbers was
generated at each time step, to approximate white noise,

the net energy input was non-zero due to the discrete

implementation of the forcing. The forcing does, in fact,

act for a finite time Tf ¼ Dt; this produces a correlation

between fi at time-step n and the velocity ui at time-step

nþ 1. It can easily be shown that the rate of kinetic

energy production due to the backscatter model is Tffifi
(e.g., see Eswaran and Pope, 1988). This quantity is

compared in Fig. 10 with the turbulent kinetic energy

production. The backscatter model inputs a significant
amount of energy, only a factor of two lower than the

peak energy production in the near-wall layer, and over

a thicker layer.

In addition to the production of energy, the back-

scatter model also introduces vorticity. The magnitude

of the curl of the stochastic forcing is compared in Fig.

10 with the fluctuating vorticity, both for a case with no

backscatter, and for one with the stochastic forcing. The
peak of the curl of the backscatter force occurs slightly

below the RANS/LES interface, and also below the

value where f ðzÞ peaks; this is due to the grid stretching

near the wall, which results in higher vorticity (for a

given amplitude of the forcing) in regions of grid re-

finement. The effect of the model is clearly to generate
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rotational motions that are effective in supporting

Reynolds shear stress, thus altering the shear stress

distribution and the mean velocity profile. Fig. 11

compares the ratio of the resolved stresses, hu00w00i to the
modeled ones, mTdU=dz, for two simulations, one in-

cluding the backscatter model (case C065Mk) and one

without it (case C065M). It is quite clear that, when

stochastic forcing is included, the eddies generated in the

the near-wall region support a significantly higher pro-

portion of the Reynolds shear stress. Notice that the

forcing is uncorrelated: hfxfzi ¼ 0: the non-linear inter-

actions between eddies generate the phase information
responsible for the increased resolved stress below the

RANS/LES interface.

Finally, Fig. 12 shows the streamwise velocity fluc-

tuation contours in planes parallel to the wall for case

C065Mk. The introduction of the stochastic forcing has

clearly been successful in breaking up the ‘‘super-

streaks’’ and generating smaller scales near the interface.

4. Conclusions

We have studied the interaction between inner and

outer regions in hybrid RANS/LES calculations in

which the inner region is modeled by RANS methods,

and the outer one using the LES approach. The hybrid

approach has been found by many investigators to result
in an unphysical transition between the two regions,

which affects the accuracy of the prediction of the ve-

locity profile and skin friction. This error is due to a

mismatch of scales between RANS and LES regions:

while in the RANS inner layer the turbulence model

supports most of the Reynolds shear stress, in the LES

region the resolved eddies must supply the dominant

contribution. In the transition region the eddy-viscosity
contribution to mean shear stress is too low, while en-

ergy-carrying eddies have not yet been generated. As a

result, global balance of momentum can be ensured only

by a higher velocity gradient in the transition region.

The location of the RANS/LES interface does not

affect the results significantly: when it is lowered, despite

the fact that shorter length-scales are generated, the

ratio of resolved to modeled stress is affected, but not
enough to correct the mean velocity profile. The intro-

duction of a backscatter model based on stochastic

forcing was successful. Forcing was performed only in

the region immediately below the interface. Various

amplitudes and envelopes of the stochastic forcing were

tested, and it was found that when the energy input of

the model was comparable to the turbulent kinetic en-

ergy production, Reynolds-stress carrying eddies could
be generated. This resulted in improved prediction of the

mean velocity profile and skin friction coefficients.

The present backscatter study should be viewed as a

proof-of-feasibility: the model that we propose has no

physical justification, at this point. Although its general

behavior follows that of the model proposed by Mason

and Thomson (1992), its amplitude is significantly larger

than that proposed by those researchers. The demon-
stration that this method may be effective, however,

suggests that renewed effort should be made to develop

and test models of this type, and base them on sound

physical arguments.
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